Probabilistic Graphical Models Lectures 10

Parameter Sharing, Representing Markov Random Fields

How many parameters?

How many parameters? 18

Parameter Sharing

P(RIS,T)	R S T	P(RIS,T)
	0 0 0	θ_1 θ_2
	2 0 0	θ_3
()	2 0 1	1-03-04
	2 10	
2	0 1 2 1	

=> 01, 02, ..., 08 Models the whole Wetwork

Example: faulty push-button

- x_n device on or off (1/0) after n times pressing the button
- button works with probability p_t if device is on, and with probability q_t if device is off

Example: faulty push-button

- x_n device on or off (1/0) after n times pressing the button
- button works with probability p_t if device is on, and with probability q_t if device is off
- button works with probability p if device is on, and with probability q if device is off

Temporal Models

Remember MRFs

$$V = \{1, 2, ..., n\} \text{ nodes /vetices}$$

$$E = \{(1,2), (1,3), (2,3), (2,4)...(4,n)\}$$

$$V = \{1, 2, ..., x_1, x_2, ..., x_n\}$$

$$V = \{1, 2, ..., x_n\}$$

$$V$$

Remember MRFs

How to represent MRFs?

We may represent MRFs by representing the potentials $\varphi_c(X_c)$ (in addition to representing the graph itself).

Pairwise MRFs

Pairwise MRFs
$$\rightarrow C = set$$
 of all edges

 $C = set$ of all nodes $+$ all edges

 $P(X_1, X_2, ..., X_n) = \frac{1}{Z} \prod_{(i,j) \in E} \Phi_{ij}(X_i, X_j)$
 OR
 $P(X_1, X_2, ..., X_n) = \frac{1}{Z} \prod_{i=1}^{n} \Phi_{i}(X_i) \prod_{(i,j) \in E} \Phi_{ij}(X_i, X_j)$

where $ARFs \rightarrow C = set$ of all edges

 $C = set$ of all nodes $+$ all edges

 OR
 OR

Pairwise MRFs - No. of Parameters

$$\begin{array}{ll} \Phi_{i}(X_{i}) & \text{table representation} & X_{i} = \{1,2,\dots,M\} \\ & \Phi_{i}(1) = \theta_{i} \\ & \Phi_{i}(2) = \theta_{2} \\ & \Phi_{i}(2) = \theta_{2} \\ & \Phi_{i}(M) = \theta_{i} \\ & \Phi_{i}(M) = \theta_{i} \\ & \Phi_{i}(X_{i}) \Phi_{i}(X_{i}) \Phi_{i}(X_{i}) \Phi_{i}(X_{i},X_{i}) \\ & = \frac{1}{Z_{X_{i}}} \Phi_{i}(X_{i}) \Phi_{i}(X_{i}) \Phi_{i}(X_{i}) \Phi_{i}(X_{i},X_{i}) \\ & = \frac{1}{Z_{X_{i}}} \Phi_{i}(X_{i}) \Phi_{i}(X_{i}) \Phi_{i}(X_{i}) \Phi_{i}(X_{i}) \Phi_{i}(X_{i}) \Phi_{i}(X_{i}) \\ & \Phi_{i}(X_{i}) \Phi_{i}(X_{i}) \Phi_{i}(X_{i}) \Phi_{i}(X_{i}) \Phi_{i}(X_{i}) \Phi_{i}(X_{i}) \\ & M-1 & \text{free garaneters for } \Phi_{i}(X_{i}) \end{array}$$

Pairwise MRFs - No. of Parameters

$$A_{i}(X_{i}, X_{i})$$
 $X_{i} \in \{1, 2, ..., m\}$
 $X_{j} \in \{1, 2, ..., m\}$
 $M^{2}-1$ free parameters for table representation

of $\Phi_{i,j}(X_{i}, X_{j})$

Pairwise MRFs - No. of Parameters

$$P(X_{1}, X_{2}, ..., X_{n}) = \frac{1}{Z} \prod_{\substack{i,j \in \mathcal{E} \\ (i,j) \in \mathcal{E}}} \{x_{i}, x_{j}\}$$

$$\# \text{ of parameters } |\mathcal{E}| (M^{2}-1) .$$

$$\# \text{ fully connected pairnule } MRF = O(|\mathcal{E}|...)$$

$$\text{General Case}$$

$$P(X_{1}, X_{2}, ..., X_{n}) = M^{n} \text{ parameter } O(M^{n})$$

$$X_{i} \in \{1, 2, ..., M^{2}\}$$

$$O(n^{2}) \notin O(M^{n})$$

Exponential form

$$X_{i} \in \{1,2,...,M\}$$
 M might be very large X_{i} might be continuous X_{i} might be continuous X_{i} might be continuous X_{i} might be continuous X_{i} must be parameterized such that $\Phi_{c}(X_{c}) > 0$ (or $\Phi_{c}(X_{c}) > 0$) $\Phi_{c}(X_{c}) > 0$ $\Phi_{c}(X_{c}) = e^{\theta_{c}(X_{c})} = e^{\theta_{c}(X_{c})} = e^{\theta_{c}(X_{c})} = e^{\theta_{c}(X_{c})} = e^{\theta_{c}(X_{c})}$

Exponential form

$$P(X_{1}, X_{2}, ..., X_{n}) = \frac{1}{Z} \prod_{c \in C} \Phi_{c}(X_{c})$$

$$= \frac{1}{Z} \prod_{c \in C} \Phi_{c}(X_{c})$$

$$= \frac{1}{Z} e^{\sum_{c \in C} \theta_{c}(X_{c})}$$

$$= \frac{1}{Z} e^{\sum_{c \in C} \theta_{c}(X_{c})}$$

$$\Phi_{c}(X_{c}) > 0 \quad \Theta_{c}(X_{c}) \in \mathbb{R}$$

log-linear representation

log-linear form: A way to parameterize
$$\Phi_c(X_c)$$
 $\theta_c(X_c) = w_1 f_c(X_c) + w_2 f_c(X_c) + \dots + w_p f_c(X_c)$
 $f_c(X_c) = e^{(X_c)} = \exp(\sum_{X=1}^c w_i f_c(X_c))$
 $f_c(X_c) = e^{(X_c)} = \exp(\sum_{X=1}^c w_i f_c(X_c))$
 $f_c(X_c) = \exp(\sum_{X=1}^c w_i f$

Example: log-linear pairwise MRFs

$$P(X_{1},X_{2},-,X_{n}) = \frac{1}{Z} \underset{\substack{i=1 \ Z \text{ exp}}}{\text{then }} \varphi_{i}(X_{i}) \underset{\substack{i=1 \ Z \text{ exp}}}{\text{then }} \varphi_{i}(X_{i},X_{j})$$

$$= \frac{1}{Z} \underbrace{exp} \left(\sum_{i=1}^{n} \varphi_{i}(X_{i}) + \sum_{\substack{i=1 \ Z \text{ exp}}} \varphi_{i}(X_{i},X_{j}) \right)$$

$$= \frac{1}{Z} \underbrace{exp} \left(\sum_{i=1}^{n} \varphi_{i}(X_{i}) + \sum_{\substack{i=1 \ Z \text{ exp}}} \varphi_{i}(X_{i},X_{j}) \right)$$

$$= \frac{1}{Z} \underbrace{exp} \left(\sum_{i=1}^{n} \sum_{\substack{k=1 \ Z \text{ exp}}} \varphi_{i}(X_{i}) + \sum_{\substack{i=1 \ Z \text{ exp}}} \varphi_{i}(X_{i},X_{j}) \right)$$

Energy function

$$P(X_{1}, X_{2}, ..., X_{n}) = \frac{1}{Z} \prod_{x=1}^{n} \Phi_{x}(X_{x}) \prod_{(x,y) \in \mathcal{E}} \Phi_{x}(X_{x}, X_{y})$$

$$P(X_{1}, ..., X_{n}) = P(X) = \frac{1}{Z} \exp\left(\frac{\sum_{x=1}^{n} \Phi_{x}(X_{x}) + \sum_{x=1}^{n} \Phi_{x}(X_{x}, X_{y})}{(x,y) \in \mathcal{E}}\right)$$

$$= \frac{1}{Z} \exp\left(\frac{\sum_{x=1}^{n} \Phi_{x}(X_{x}) + \sum_{x=1}^{n} \Phi_{x}(X_{x}, X_{y})}{(x,y) \in \mathcal{E}}\right)$$

$$= \frac{1}{Z} \exp\left(\frac{\Phi(X)}{\Phi(X)}\right)$$

$$= \frac{1}{Z} \exp\left(\frac{\Phi(X)}{\Phi($$

Back to log-linear models

$$P(X_{i}-X_{n})=\frac{1}{Z}\exp\left(\frac{n}{Z}\theta_{i}(X_{i})+\sum_{\substack{(i,j)\in\mathcal{E}\\ (i,j)\in\mathcal{E}}}\theta_{ij}(X_{i},X_{j})\right)$$

$$=\frac{1}{Z}\exp\left(\frac{n}{Z}\sum_{\substack{(i,j)\in\mathcal{E}\\ (i,j)\in\mathcal{E}}}\omega_{i}^{k}+\sum_{\substack{(i,j)\in\mathcal{E}\\ (i,j)\in\mathcal{E}}}\omega_{i}^{k}+\sum_{\substack{(i,j)\in\mathcal{E}}}\omega_{i}^{k}+\sum_{\substack{(i,j)\in\mathcal{E}\\ (i,j)\in\mathcal{E}}}\omega_{i}^{k}+\sum_{\substack{(i,j)\in\mathcal{E}\\ (i,j)\in\mathcal{E}}}$$

How strong are log-linear models?

$$P(X_{1} - X_{n}) = \frac{1}{2} \exp\left(\sum_{x=1}^{n} \Theta_{\lambda}(X_{x}) + \sum_{(x,y) \in \Xi} \Theta_{\lambda y}(X_{x}, X_{y})\right)$$

$$= \frac{1}{2} \exp\left(\sum_{x=1}^{n} \sum_{k=1}^{p} \omega_{\lambda}^{k} + \sum_{(x,y) \in \Xi} \omega_{\lambda}^{k} +$$

Using structure

Features?

Using structure

Features? f(A,B) = 1(A = B)

Example: Ising Model

Example: Ising Model

Shared edge parameters

Homogeneous & isotropic systems
$$E(X_1,...,X_n) = -\sum_{i=1}^{n} w_i X_i - \sum_{(i,j) \in \mathcal{E}} w_i X_j$$
parameter sharing

Image semantic segmentation

Example: Image Segmentation

Segmentation: How to represent unary energy terms $E_i(X_i)$?

Segmentation: How to represent unary energy terms $E_i(X_i)$?

Segmentation: How to represent unary energy terms $E_i(X_i)$?

How to represent binary energy terms $E_{ij}(X_i, X_j)$?

$$E(X) = \sum_{i=1}^{n} E(X_i) + \sum_{(i,j) \in \Sigma} E_{i,j}(X_i, X_j)$$

Neighboury pixels tend to here belong to the same class

How to represent binary energy terms $E_{ij}(X_i, X_j)$?

Neighboury pixels tend to be belong to the same class

$$E_{ij}(X_i, X_j) = \frac{1}{(X_i \neq X_j)}$$
More Recent Models
$$E_{ij}(X_i, X_j) = \sum_{k=1}^{n} \sum_{l=1}^{n} (X_i, X_j) = \sum_{k=1}^{n} \sum_{l=1}^{n} (X_i, X_j) = \sum_{k=1}^{n} \sum_{l=1}^{n} \sum_{k=1}^{n} (X_i, X_j) = \sum_{k=1}^{n} \sum_{l=1}^{n} \sum_{k=1}^{n} \sum$$